Exercise 10

Find $d y / d x$ by implicit differentiation.

$$
x e^{y}=x-y
$$

Solution

Differentiate both sides with respect to x.

$$
\begin{gathered}
\frac{d}{d x}\left(x e^{y}\right)=\frac{d}{d x}(x-y) \\
{\left[\frac{d}{d x}(x)\right] e^{y}+x\left[\frac{d}{d x}\left(e^{y}\right)\right]=\frac{d}{d x}(x)-\frac{d}{d x}(y)} \\
(1) e^{y}+x\left[e^{y} \cdot \frac{d}{d x}(y)\right]=1-y^{\prime} \\
e^{y}+x e^{y} y^{\prime}=1-y^{\prime}
\end{gathered}
$$

Solve for y^{\prime}.

$$
\begin{gathered}
\left(1+x e^{y}\right) y^{\prime}=1-e^{y} \\
y^{\prime}=\frac{1-e^{y}}{1+x e^{y}}
\end{gathered}
$$

